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Operational Transformation in Real-Time Group Editors:Issues, Algorithms, and AchievementsChengzheng Sun Clarence (Skip) EllisSchool of Computing and Information Technology Department of Computer ScienceGri�th University University of ColoradoBrisbane, Qld 4111, Australia Boulder, CO 80309-0430, USAscz@cit.gu.edu.au skip@colorado.eduhttp://www.cit.gu.edu.au/�scz http://www.cs.colorado.edu/�skip/Home.htmlABSTRACTReal-time group editors allow a group of users to view andedit the same document at the same time from geographi-cally dispersed sites connected by communication networks.Consistency maintenance is one of the most signi�cant chal-lenges in the design and implementation of these types ofsystems. Research on real-time group editors in the pastdecade has invented an innovative technique for consistencymaintenance, called operational transformation. This paperpresents an integrative review of the evolution of operationaltransformation techniques, with the goals of identifying themajor issues, algorithms, achievements, and remaining chal-lenges. In addition, this paper contributes a new optimizedgeneric operational transformation control algorithm.KeywordsConsistency maintenance, operational transformation, con-vergence, causality preservation, intention preservation,group editors, groupware, distributed computing.INTRODUCTIONReal-time group editors allow a group of users to view andedit the same text/graphic/image/multimedia document atthe same time from geographically dispersed sites connectedby communication networks. These types of groupware sys-tems are not only very useful tools in the areas of CSCW [5],but also serve excellent vehicles for exploring a range of fun-damental and challenging issues facing the designers of real-time groupware systems in general. One such issue is consis-tency maintenance of shared documents under the constraintsof short response time, and support for free and concurrentediting in distributed environments [17].Research on real-time group editors in the past decadehas invented an innovative technique for consistency mainte-nance, under the name of operational transformation, whichwas pioneered by the GROVE (GRoup Outline Viewing Ed-itor) system in 1989 [3]. Since then, several research groupshave independently extended the operational transformationtechnique in their design and implementation of these typesof systems. Major representatives in this area include theREDUCE (REal-time Distributed Unconstrained Coopera-tive Editing) system [14, 15, 16, 17], the Jupiter system [11],and the adOPTed algorithm [13]. This paper will present anintegrative review of the evolution of operational transforma-Appeared in Proc. of 1998 ACM Conference on Computer-Supported Cooperative Work, Seattle, USA, Nov.14-18, 1998,pp. 59-68.

tion techniques, with the goals of identifying the major issues,algorithms, achievements, and remaining challenges. In ad-dition, this paper will contribute a new optimized genericoperational transformation control algorithm. This paperwill focus exclusively on transformation-based consistencymaintenance algorithms. For discussion of alternative con-sistency maintenance techniques, such as turn-taking, lock-ing, serialization, and transactions, the reader is refereedto [5, 7, 8, 10, 17].The rest of this paper is organized as follows: First, somebasic concepts and terminologies are introduced. Then, theoperational transformation algorithm in the GROVE systemis reviewed to see where the original work was started andwhat problems were left unsolved. Next, the problems withthe original GROVE transformation algorithm are analyzed,and three di�erent approaches to solving them are discussedone by one, including the REDUCE approach, the Jupiterapproach, and the adOPTed approach. Furthermore, a newoptimized generic operational transformation control algo-rithm is proposed. Finally, the paper is concluded with asummary of the major achievements so far and remainingchallenges for future research.PRELIMINARIESIn this section, some basic concepts and terminologies are in-troduced. Following Lamport [9], we de�ne a causal (partial)ordering relation on operations in terms of their generationand execution sequences as follows.De�nition 1: Causal ordering relation \!"Given two operations Oa and Ob, generated at sites i andj, then Oa ! Ob, i�: (1) i = j and the generation of Oahappened before the generation of Ob, or (2) i 6= j and theexecution of Oa at site j happened before the generation ofOb, or (3) there exists an operation Ox, such that Oa ! Oxand Ox ! Ob. 2De�nition 2: Dependent and independent operationsGiven any two operations Oa and Ob. (1) Ob is dependenton Oa i� Oa ! Ob. (2) Oa and Ob are independent (or con-current), expressed as Oa k Ob, i� neither Oa ! Ob, norOb ! Oa. 2To illustrate, consider a real-time group editing sessionwith three sites, as shown in the time-space graph of Figure 1.There are four editing operations in this scenario: operationO1 generated at site 0, operations O2 and O3 generated atsite 1, and operation O4 generated at site 2. It is assumedin this scenario that an operation is executed immediately at
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Fig. 1. A scenario of a real-time group editing session.the local site, then propagated to remote sites and executedthere upon their arrival. The arrows in the graph representthe propagation of operations from the local site to remotesites. Each vertical line in the graph represents the activitiesperformed by the corresponding site. At site 1, for example,O2 is executed �rst, followed by O1, O3, and O4.According to De�nitions 1 and 2, there are three pairs ofdependent operations in this scenario: O1 ! O3, O2 ! O3,and O2 ! O4 because the execution of O1 happens beforethe generation of O3, the generation of O2 happens beforethe generation of O3, and the execution of O2 happens be-fore the generation of O4. Moreover, there are three pairs ofindependent operations in this scenario: O1 k O2, O1 k O4,and O3 k O4 because for any pair, neither operation's exe-cution happens before the other operation's generation. Aswill be seen in the following discussion, several fundamentalinconsistency problems are embedded in this scenario. More-over, the seemingly simple independence relationship amongoperations in this scenario is actually quite intricate, and hasgiven signi�cant technical challenges to the design of correctoperational transformation algorithms [17].THE GROVE APPROACHTo achieve good responsiveness and avoid a single-point offailure in the system, a replicated architecture has beenadopted by GROVE: the shared documents are replicated atthe local storage of each participating site. An (update) oper-ation is executed on the local replica of the shared documentimmediately after its generation, then broadcast to remotesites for execution (after some delay and transformation).Divergence and causality-violation problemsSuppose remote operations are executed upon their arrivaland in their original form, two inconsistency problems whichmay occur in a concurrent editing session have been identi�edin GROVE: one is divergence, and the other is causality-violation.For example, consider the scenario shown in Fig. 1. Thefour operations arrive and are executed in the following or-ders: O1, O2, O4, and O3 at site 0; O2, O1, O3, and O4 at site1; and O2, O4, O3, and O1 at site 2. If operations are not com-mutative, �nal editing results would not be identical amongcooperating sites. This problem is called divergence. Clearly,the divergence problem should be prohibited for applicationswhere the consistency of the �nal results is required.

Moreover, since each cooperating site generates and broad-casts operations without synchronization, operations may ar-rive and be executed in an order di�erent from their naturalcausal order. As shown in Fig. 1, operation O3 is generatedafter the arrival of O1 at site 1, so O3 ! O1. However, sinceO3 arrives before O1 at site 2, the execution of O3 before O1may result in an unde�ned operation O3, which refers to anonexistent context to be created by O1, or a confused userat site 2, who observes the e�ect in O3 before observing thecause in O1. This problem is called causality-violation. Outof causal order execution should be prohibited for applica-tions where a synchronized interaction among multiple usersis required.Consistency correctness criteriaBased on the identi�cation of the two inconsistency problems,the GROVE consistency correctness criteria were de�ned bythe following two properties:1. Convergence property: copies of the shared docu-ment are identical at all sites at quiescence (i.e., all gen-erated operations have been executed at all sites).2. Precedence property: if one operations Oa causallyprecedes another operation Ob, then at each site theexecution of Oa happens before the execution of Ob.In search of a solution where the only constraint on execu-tion order is the causal ordering among operations, GROVEinvented the late well-known distributed OPerational Trans-formation (dOPT) algorithm. GROVE's solution consistsof two components: one is the state-vector timestampingscheme for ensuring the precedence property, and the otheris the dOPT algorithm for ensuring the convergence prop-erty. The basic idea of the dOPT algorithm is that whenan operation satis�es the precedence condition for execution,it is transformed against independent operations in the Log(which saves all executed operations in the order of their ex-ecution) in such a way that executions of the same set ofproperly transformed independent operations in di�erent or-ders produce identical document states, thus ensuring theconvergence property.A transformation propertyTo ensure convergence, the dOPT algorithm requires thetransformation function T to satisfy the following condition:For any two independent operations Oa and Ob, suppose thatO0a = T (Oa;Ob), and O0b = T (Ob;Oa), it must be thatOa � O0b � Ob � O0awhere \�" means the two sequences of operations Oa � O0band Ob � O0a are equivalent in the sense that when appliedon the same input document state they produce the sameoutput document state.In addition to the above formally speci�ed condition,GROVE also recognized there were some circumstances, inwhich the transformation function should achieve an e�ectwhich is non-serializable. For example, suppose Oa and Obare two independent (character-wise) delete operations re-ferring to the same position, then T must ensure only onecharacter is eventually deleted no matter in which order Oaand Ob are executed. This non-serializable e�ect is, however,not captured by the above formal condition for T .
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3A sketch of the dOPT algorithmThe transformation function T relies on the semantics of theediting operations and hence is application-dependent. ThedOPT algorithm, however, is generic and takes care of select-ing operations for transformation and determining the trans-formation order. The basic control structure of the dOPTalgorithm is simple: Given a causally ready operation O, thedOPT algorithm scans the Log to transform O against anyoperation in the Log which is independent of O; then thetransformed O, denoted as EO (i.e., the execution form ofO), is executed and saved in the Log. The dOPT algorithmis sketched below.dOPT(O, Log) {EO = O;for (i = 1; i <= n; i++) {if (Log[i] || O)then EO = T(EO, Log[i]);}Execute EO;Append EO at the end of the Log;}An unsolved dOPT puzzleIn [3] (Fig. 4 in Section 6: Discussion of Correctness), onescenario was identi�ed, where the dOPT algorithm could notensure convergence. This scenario1 is re-displayed in Fig. 2.
site 1 site 2
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time
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O1Insert[x,1]

Insert[y, 1]Insert[z,1]

Fig. 2. The mixed priority example, in which the dOPT algorithmfailed to ensure convergence.Suppose the GROVE transformation function uses thefollowing priority rule: when two insert operations havethe same position parameter, the position of the operationwith a lower priority (i.e., smaller site identi�er) will beshifted2 . According to the generic dOPT algorithm and theapplication-dependent transformation function in [3], the op-eration transformation and the �nal document states at thethree sites are as follows (assume the initial document isempty).At site 3, O3 �rst inserts \z" into the document3. When1In fact, the scenarios in Fig. 2 can be obtained by removing O2 from thescenario illustrated in Fig. 1.2It should be noted that this priority rule is actually opposite to the oneused in the de�nition of transformation function T11 in [3]. This changeis necessary to correctly illustrate the problem the GROVE designers reallyintended to illustrate.3In this paper, the sequence of characters in a text document are referredto (or addressed) from 1 to the end of the document.

O1 arrives, it inserts \x" in front of \z" to get a documentwith \xz". Finally, when O2 arrives, since O2 k O3 andO2 k O1, it is �rst transformed against O3 and becomesO02 = Insert[y; 2] due to its lower priority than O3; thenit is transformed against O1 and becomes O002 = Insert[y;3].After the execution of O002 , the document contains \xzy"4.At site 1, the process of operation transformation and the�nal result are the same as that at site 3. At site 2, O2 �rstinserts \y" into the document. When O3 arrives, it has tobe transformed against O2 since O3 k O2, but no change hasbeen made to O3 due to its higher priority than O2. Afterthe execution of O3, the document contains \zy". Finally,when O1 arrives, it has to be transformed against O2 sinceO1 k O2. The transformation of O1 against O2 will produceO01 = Insert[x;2] due to its lower priority than O2. O01 doesnot need to be transformed against O3 since O3 ! O1. Afterthe execution of O01, the document contains \zxy", which isnot identical to \xzy" at sites 3 and 1.The problem illustrated in Fig. 2 is fundamental to thecorrectness of operational transformation approach. As cor-rectly pointed out in [3], this problem could not be �xed bysimply reversing the priority rule, since this patch works inthis case but fails in other rather similar cases. In search of acorrect solution to this problem, the simple-minded priorityscheme (using a single site identi�er) was thought to be rootof the problem, thus a sophisticated (and complicated) prior-ity scheme (using a list of site identi�ers) was proposed in [3].This new priority scheme did not prove to be successful insolving the problem, thus leaving one unsolved puzzle to thegroupware research community.The innovative idea of maintaining consistency by opera-tional transformation, as well as the unsolved dOPT puzzle,has been a major inspiration and stimulation to a numberof research groups in the area of real-time groupware sys-tems. In fact, several research groups [1, 11, 13, 17], haveindependently re-discovered that the dOPT algorithm didnot work whenever an operation is concurrent with two ormore dependent operations, and di�erent approaches havebeen proposed to �x it. In the following sections, three alter-native approaches will be discussed, including the REDUCEapproach [14, 15, 17] using an 1-dimensional data structurefor keeping track of executed operations, the Jupiter ap-proach [11] using a 2-dimensional data structure for main-taining executed operations, and the adOPTed approach [13]using a N-dimensional data structure (where N is numberof cooperating sites in the system) for maintaining executedoperations.THE REDUCE APPROACHREDUCE follows GROVE in adopting a fully distributed andreplicated system architecture. A linear History Bu�er (HB),which is the same as the Log in GROVE, is used to keep trackof all executed operations. In addition, a garbage collectionscheme was devised to remove useless operations from theHB [17].The intention-violation problemApart from divergence and causality-violation problems, onespecial kind of inconsistency problem { intention-violation {has been identi�ed in REDUCE [14].4It should be pointed out that this result is di�erent from what was pre-sented in [3].
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4To illustrate, consider the two independent operations O1and O2 in the scenario shown in Fig. 1. At site 0, O2 isexecuted on a document state which has been changed bythe preceding execution of O1. Therefore, the subsequentexecution of O2 may refer to an incorrect position in the newdocument state, and result in an editing e�ect di�erent fromthe O2's intention, which is de�ned as the editing e�ect whichcould be achieved by applying O2 on the document state fromwhich O2 was generated [14].For example, assume the shared document initially con-tains the following sequence of characters: \ABCDE". Sup-pose O1 = Insert[\12"; 2]; which intends to insert string\12" at position 2, i.e., between \A" and \BCDE"; andO2 = Delete[2;3], which intends to delete the two charac-ters starting from position 3, i.e., \CD". After the executionof these two operations, the intention-preserved result (at allsites) should be: \A12BE". However, the actual result at site0, obtained by executing O1 followed by executing O2, wouldbe: \A1CDE", which clearly violates the intention of O1 sincethe character \2", which was intended to be inserted, is miss-ing in the �nal text, and also violates the intention of O2 sincecharacters \CD", which were intended to be deleted, are stillpresent in the �nal text. A serialization protocol might beused to ensure that all sites execute O1 and O2 in the sameorder to get an identical result \A1CDE", but this identicalresult is still inconsistent with the intentions of both O1 andO2.It is important to recognize that intention violation is aninconsistency problem of a di�erent nature from the diver-gence problem. The essential di�erence between divergenceand intention violation is that the former can always be re-solved by a serialization protocol, but the latter cannot be�xed by any serialization protocol if operations were alwaysexecuted in their original forms.A consistency modelDue to the distinction of the intention-violation problem fromthe divergence problem, one additional consistency correct-ness criteria { intention-preservation { was proposed in RE-DUCE [14]. The REDUCE correctness criteria for consis-tency maintenance has been de�ned in the form of a consis-tency model as follows.De�nition 3: A consistency modelA cooperative editing system is consistent if it always main-tains the following properties:1. Convergence: when the same set of operations havebeen executed at all sites, all copies of the shared docu-ment are identical.2. Causality-preservation: for any pair of operationsOa and Ob, if Oa ! Ob, then Oa is executed before Obat all sites.3. Intention-preservation: for any operation O, the ef-fects of executing O at all sites are the same as theintention of O, and the e�ect of executing O does notchange the e�ects of independent operations. 2To support the three properties of the consistencymodel, REDUCE adopted the same state-vector timestamp-ing scheme as that in GROVE for achieving causality-preservation (or precedence in GROVE's terminology). Withthe distinction of intention-preservation from convergence,

two separate schemes were devised for supporting these twodi�erent properties: an undo/do/redo scheme for achievingconvergence, and an operational transformation algorithm forachieving intention-preservation.To achieve convergence, a total ordering relationship \)"among operations is de�ned [14]. However, operations are al-lowed to be executed in any order as long as their causality ispreserved. When a new operation O is causally-ready for ex-ecution, (1) undo operations in the HB which totally followO to restore the document to the state before their execu-tion; (2) do O; and �nally (3) redo all operations that wereundone from the HB. It should be noted that the undo/redooperations involved in this scheme are internal operations,rather than external operations initiated from the user in-terface [12]. Therefore, the undo/do/redo scheme should beimplemented in such a way that only the �nal result (in-stead of the intermediate ones) produced at the end of theundo/do/redo process is re
ected on the user interface.Transformation pre-/post-conditionsSince transformation functions in REDUCE are not responsi-ble for ensuring convergence, they are not required to satisfythe same condition as in GROVE. In REDUCE, when oper-ation Oa is transformed against operation Ob, it is requiredthat the e�ect of the transformed operation O0a on the doc-ument state that contains the impact of Ob should be thesame as the e�ect of Oa on the document state that doesnot contain the impact of Ob. This type of transformationis called Inclusion Transformation (IT), since it transformsan operation Oa against another operation Ob in such a waythat the impact of Ob is e�ectively included. The GROVEtransformation functions can be regarded as a kind of in-clusion transformation. Most importantly, it was recognizedthat the correctness of this inclusion transformation relies onthe condition that both Oa and Ob are de�ned on the samedocument state [17], so their parameters are comparable andcan be used to derive a proper adjustment to Oa. Failingto recognize and to ensure this condition is the root of theunsolved dOPT puzzle.In search of a correct and sophisticated solution tointention-preservation, REDUCE introduced another type oftransformation, called Exclusion Transformation (ET), whichtransforms Oa against another operation Ob in such a waythat the impact of Ob is e�ectively excluded from Oa [17].For example, O4 and O1 are independent operations but gen-erated from di�erent documents states, as shown in Fig. 1.When O4 arrives at site 0, it is incorrect to simply transformO4 against O1. Instead, exclusion transformation should beapplied on O4 against its causally preceding operation O2 toproduce O04 in such a way that O2's impact on O4 is excluded.Consequently, O04 e�ectively shares the same document statewith O1, and then can be applied with the inclusion trans-formation against O1.To capture the required relationship between operationsfor correct transformation, the notion of operation context isintroduced. The context of a document state is the sequenceof operations executed on the initial document state to ar-rive at the current document state. Given an operation O,the de�nition context of O, denoted as DC(O), is the con-text of the document state on which O is de�ned; and theexecution context of O, denoted as EC(O), is the context ofthe document state on which O is to be executed. The inten-
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5tion of an operation can be preserved if its de�nition contextmatches its execution context, i.e., DC(O) = EC(O).REDUCE uses two primitive transformation functions {IT (Oa; Ob) and ET (Oa;Ob) { to make an operation's de�ni-tion context equivalent to its execution context. For specify-ing pre-/post-conditions of the transformation functions, twocontext-based relations are de�ned below (Note: a context isexpressed as an operation list in the rest of the paper).De�nition 4: Context equivalent relation \ t "Given two operations Oa and Ob, Oa and Ob are context-equivalent, i.e., Oa tOb, i� DC(Oa) = DC(Ob). 2De�nition 5: Context preceding relation \7!"Given two operations Oa and Ob, Oa is context preceding Ob,i.e., Oa 7! Ob, i� DC(Ob) = DC(Oa) + [Oa] (where \+"expresses the concatenation of two lists). 2With the context-based relations, the pre-/post-conditionsof the two transformation functions are speci�ed as follows.Speci�cation 1: IT (Oa;Ob) : O0a1. Precondition for input parameters: Oa t Ob.2. Postcondition for output: Ob 7! O0a, and the e�ect ofO0a in DC(O0a) is the same as the e�ect of Oa in DC(Oa).2Speci�cation 2: ET (Oa;Ob) : O0a1. Precondition for input parameters: Ob 7! Oa.2. Postcondition for output: Ob tO0a, and the e�ect of O0ain DC(O0a) is the same as the e�ect of Oa in DC(Oa).2The design of a pair of IT=ET functions for string-wiseoperations, which satisfy the speci�ed post-conditions, canbe found in [16, 17].The GOT control algorithmTo ensure transformation pre-conditions a Generic Opera-tional Transformation (GOT) control algorithm has been de-vised [17]. Taking a causally-ready operation O and its execu-tion context EC(O) (i.e., the current contents of the HB) asinput parameters, the GOT control algorithm uses the IT/ETfunctions to transform O into EO (the execution form of O)such that DC(EO) = EC(O).Three cases have been distinguished and handled dif-ferently in the GOT control algorithm, as illustrated inFig. 3. In this example, we assume EC(O) = HB =[EO1; EO2; EO3].Case 1 : All operations in EC(O) are causally precedingO. It must be that DC(O) = EC(O), so that EO = O(no transformation is performed).Case 2 : Operations causally preceding O are listed inEC(O) before operations independent of O. SinceEO1 ! O, EO2 k O, and EO3 k O, by transformingO against EO2 and EO3 in sequence, we get EO suchthat DC(EO) = EC(O).Case 3 : At least one causally-preceding operation is posi-tioned after an independent operation in EC(O). Thisis the case that the dOPT algorithm failed to handlecorrectly. Since EO1 ! O, EO2 k O, and EO3 ! O, itmust be that DC(O) = [EO1; EO03], where EO03 is the
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O’Fig. 3. Three cases analysis and handling by the GOT control algo-rithmoriginal form of EO3 when O was generated. Transform-ing O directly against any operation in EO(O) would vi-olate the pre-conditions for IT/ET functions. The strat-egy taken by the GOT algorithm is as follows: (1) ap-ply exclusion transformation on EO3 against EO2 (bothEO3 and EO2 are available in EO(O)) to obtain EO03,(2) apply exclusion transformation on O against EO03 toget an intermediate O0; and �nally (3) apply inclusiontransformation on O0 against EO2 and EO3 in sequence,we get EO such that DC(EO) = EC(O).To describe the GOT algorithm, a few notations needto be introduced: Given a list of operations L, L[i; j] de-notes a sublist of L containing the operations from EOito EOj inclusively; and L�1 denotes the reverse of L.LIT (O;L)/LET (O; L) is used to denote the application ofIT=ET function on operation O against a list of operationsin L in sequence from left to right.Algorithm 1: GOT(O, L): EOO: a causally-ready operationL: the list of operations [EO1; EO2; :::;EOm] in EC(O).EO: the execution form of O.1. Scan L[1;m] from left to right to �nd the �rst operationEOk such that EOk k O. If no such an operation isfound, then return EO := O.2. Otherwise, scan L[k + 1; m] to �nd operations causally
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6preceding O. If no single such operation is found, thenreturn EO := LIT (O; L[k;m]).3. Otherwise, let L1 = [EOc1 ; :::;EOcr ] be the list of op-erations in L[k;m] which are causally preceding O.(a) Get L01 = [EO0c1 ; :::;EO0cr ] as follows:i. EO0c1 := LET (EOc1 ; L[k; c1 � 1]�1):ii. For 2 � i � r,Ot := LET (EOci ; L[k; ci � 1]�1);EO0ci := LIT (Ot; [EO0c1 ; :::;EO0ci�1 ]).(b) O0 := LET (O; L0�11 ).(c) return EO := LIT (O0; L[k;m]). 2It can be shown that the pre-conditions required by thetransformation functions are always guaranteed by the GOTcontrol algorithm. Therefore, if the post-conditions arealways ensured by the transformation functions, then theGOT control algorithm will transform O into EO, so thatthe execution of EO on EC(O) will preserve the inten-tion of O. To achieves both intention-preservation and con-vergence, the GOT control algorithm has been integratedwith the undo/do/redo scheme to form an undo/transform-do/transform-redo scheme [17].A solution to the dOPT puzzleIn this section, we show how REDUCE solves the dOPT puz-zle. We assume, without losing generality, the total orderingrelationship \)" among the three operations in Fig. 2 is:O3 ) O1 ) O2. Also, we assume the the REDUCE transfor-mation function IT (Oa;Ob) uses the following shifting rule:if both Oa and Ob are insertions and have the same positionparameter, the position of Oa will be shifted. This shiftingrule is consistent with the priority rule used in GROVE.Under REDUCE, the operation transformation and the �-nal document states (i.e., \xzy") at sites 3 and 1 are thesame as they are under GROVE. The situation at site 2,however, is di�erent: O2 �rst inserts \y" into the document.Next, when O3 arrives, O2 has to be undone since O3 ) O2.Then O3 is executed as is, and O2 is inclusively transformedagainst O3 (according to O3 k O2 and Case 2 in the GOTalgorithm) to become O02 = Insert[y; 2] according to theshifting rule. After the execution of both O3 and O02, thedocument contains \zy". Finally, when O1 arrives, O02 hasto be undone since O1 ) O02. Then O1 is executed as is(since O3 ! O1), and O02 is inclusively transformed againstO1 (according to O2 k O1 and Case 2 in the GOT function)to become O002 = Insert[y; 3]. After the execution of O002 , thedocument contains \xzy", which is identical to the documentstate at sites 3 and 1, and the intentions of all three opera-tions are preserved. In this particular example, the exclusiontransformation is not used, but in more complex scenarios,such as the one shown in Fig. 1, exclusion transformation isneeded (see [17]).THE JUPITER APPROACHThe Jupiter collaboration system was developed at XeroxPARC [11]. Since Jupiter has already had a central serverfor maintaining the states of objects (e.g., White-board, textdocuments, etc.) in the shared persistent virtual world, it isnatural to use this central server for supporting consistencymaintenance of shared objects as well. The Jupiter consis-tency maintenance algorithm was derived from the dOPT al-gorithm. The most interesting part of the Jupiter approach

is the adaptation of the dOPT optimistic algorithm to anenvironment with multiple replicated clients sites plus onecentralized server site.In Jupiter, the shared documents are replicated at all co-operating client sites, which is the same as in GROVE. Thedi�erence is that the shared documents are also maintainedat the central server and communications happen only be-tween a client and the server (i.e., a 2-way communication).When an updating operation is generated at a client site, it isimmediately executed at the local client site (for fast responseto user actions), and then propagated to the central server.The server �rst transforms the incoming operation if neces-sary, then executes the transformed operation on its copy ofthe shared document, and �nally broadcasts the transformedoperation to all other client sites. Upon receiving an oper-ation propagated from the central server, a client site maytransform this operation if necessary, and then executes it onthe local copy of the document. This star-like topology ofcommunication eliminates the concern for ensuring causality(i.e., causality-violation never occurs). It also substantiallysimpli�es the operational transformation control algorithm.To achieve convergence, the Jupiter transformation func-tion is required to satisfy the same property as that re-quired by the dOPT algorithm. However, Jupiter uses a 2-dimensional state space graph, instead of a linear Log/HB,to keep track of all possible operation transformation pathsto guide the selection of right operations for transformation.The Jupiter algorithm ensures that any pair of operationsinvolved in a transformation must have originated from thesame starting state in the state space graph, which is es-sentially the same as ensuring the context equivalent pre-condition by the GOT algorithm in the REDUCE approach.Therefore, the Jupiter algorithm is able to correct the dOPTalgorithm under the condition that only 2-way communica-tions are allowed in the system. An alternative approach tocorrecting the dOPT algorithm for the 2-way communicationspecial case can be found in [1].THE ADOPTED APPROACHThe adOPTed algorithm adopted the same correctness cri-teria from GROVE for consistency maintenance: conver-gence and precedence (i.e., causality-preservation). It alsofollowed GROVE in using a fully distributed and replicatedarchitecture. What is di�erent in the adOPTed algorithmis that it requires an additional property for transformationfunctions to satisfy. Given two operations Oa and Ob, letO0a = T (Oa;Ob), and O0b = T (Ob;Oa), the transformationfunction T is required to possess the following two proper-ties:Transformation Property 1 (TP1) :Oa � O0b � Ob � O0aTransformation Property 2 (TP2) : For any O,T (T (O; Oa);O0b) = T (T (O; Ob);O0a)TP1 is the same as that required by the dOPT algorithmand the Jupiter algorithm, but TP2 is new in the adOPTedalgorithm. TP2 ensures that the transformation of opera-tion O along di�erent paths will yield the same resulting op-eration. These two properties can be illustrated by using a
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7directed graph, called interaction model [13], as shown in Fig-ure 4.
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Fig. 4. Interaction model illustration of transformation properties.The vertices of the interaction model graph are labeledby document states, and the edges are labeled by opera-tions. For example, the four vertices of the square in Fig-ure 4-(a) are labeled by four document states: S0, S1, S2,and S3, respectively; the two solid edges are labeled by twooriginal operations: Oa and Ob, respectively; and the othertwo dashed edges are labeled by two transformed operations:O0a = T (Oa;Ob), and O0b = T (Ob;Oa), respectively. Essen-tially, TP1 ensures the unique vertices labeling, whereas TP2ensures the unique edge labeling in the interaction modelgraph. It has been shown in [13] that TP1 and TP2 are thenecessary and su�cient conditions for ensuring convergencein systems which allow N-way communication (where N isthe number of cooperating sites).The adOPTed algorithm used an N-dimensional interac-tion model graph to keeps track of all valid paths of opera-tion transformations. The N-dimensional interaction modelgraph can be viewed as a generalization of the 2-dimensionalstate space in the Jupiter algorithm, and it also plays thesame role in guiding the selection of the right path and rightoperations for transformation. The adOPTed algorithm en-sures that any pair of operations involved in a transformationare de�ned on the same document state.Using the adOPTed algorithm and the same transforma-tion function T11 from GROVE, the solution to the dOPT
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O1’=Ins[x,1]Fig. 5. The adOPTed solution to the dOPT puzzlepuzzle can be illustrated in Figure 5. At sites 3 and 1, theoperation transformation and execution follow the same path:O3 and O1 are executed as is, but O2 is transformed againstO3 and O1 in sequence, resulting in O02 = Ins[y; 2], thenO002 = Ins[y; 3] (In the meantime, the adOPTed algorithmalso produces O03 = Ins[z;1], and O01 = Ins[x;1], which areof no use at sites 3 and 1). The execution of O3, O1, and O002in sequence results in the �nal document state \xzy". At site2, a di�erent path in the interaction model graph is taken.First, O2 is executed as is. When O3 arrives, it is trans-formed against O2 to become O03 = Ins[z;1]. Meanwhile, theadOPTed algorithm also transforms O2 against O3 to pro-duce O02 = Ins[y; 2], and both O03 and O02 are maintainedat proper positions in the interaction model graph. WhenO1 arrives, the adOPTed algorithm searches the interactionmodel graph to �nd the right operation O02 (instead of O2,which was used in the dOPT algorithm) for transformationto get O01 = Ins[x; 1]. In the meantime, the adOPTed algo-rithm also produces and maintains O002 = Ins[y; 3] at site 2(O002 is of no use in this example). The execution of O2, O03,and O01 in sequence results in an identical document state\xzy".AN OPTIMIZED ALGORITHM: GOTOWithout requiring TP1 and TP2, the GOT control algorithm,integrated with the undo/do/redo scheme [17], is the onlyknown solution for achieving both intention-preservation andconvergence. An interesting question is: what could the GOTalgorithm achieve if TP1 and TP2 are satis�ed by IT/ETfunctions? In this section, we will answer this question andpropose a new optimized GOT control algorithm.To take advantage of the two additional post-conditionsTP1 and TP2, we modify the original context-based rela-tions in De�nitions 4 and 5 as follows: replace the equal sign\=" with the equivalence sign \�". Obviously, the equal re-lation \=" between operation contexts is a special case of theequivalence relation \�". With this generalization of context-based relations and the extension of pre-/post-conditions forIT/ET functions, we found that the original GOT controlalgorithm can ensure both intention-preservation and con-vergence, without integrating with the undo/do/redo schemeor using a multi-dimensional graph. The veri�cation of thisclaim can follow similar reasonings as used in [13], which is,however, beyond the scope of this paper.Moreover, the two additional post-conditions TP1 andTP2 can be employed to optimize the GOT control algorithm
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8by reducing the number of IT/ET transformations. The op-timized algorithm, named as GOTO (GOT Optimized), re-sembles the original GOT algorithm in handling the �rst andthe second cases (see Fig. 3). For the third case, the handlingis di�erent. In addition to performing transformations on thede�nition context of O, we also perform transformations onthe execution context of O to make the two contexts equiv-alent. This can be achieved by executing the following twosteps:1. Transform execution context EC(O) into such an equiv-alent EC(O)0 that all operations causally precedingO are positioned before independent operations inEC(O)0. Let EC(O)0 = EC(O)0:left+ EC(O)0:right,where EC(O)0:left is the sublist of causally precedingoperations, and EC(O)0:right is the sublist of indepen-dent operations.2. Apply the inclusion transformation on O againstthe list of independent operations in EC(O)0:right.The transformation pre-condition is satis�ed becauseEC(O)0:left � DC(O).The question now is: how to transform EC(O) into suchan equivalent EC(O)0?By using IT and ET functions, the Transpose function isde�ned to transform and swap two operations in an execu-tion context.Function 1: Transpose(Oa;Ob) : O0b;O0af O0b := ET (Ob;Oa);O0a := IT (Oa;O0b);return (O0b;O0a);gThe pre-condition for Oa and Ob is: Oa 7! Ob. Thepost-condition for O0a and O0b is: O0b 7! O0a. Based onthe Transpose function, function LTranspose(L) is de�ned,which transforms and circularly shifts the list of operationsin L.Procedure 1: LTranspose(L)f for (i = jLj; i > 1; i- -)(L[i� 1]; L[i]) := Transpose(L[i� 1]; L[i]);gAccording to TP1 and TP2, and the de�nition of Trans-pose, it must be that L � L0, where L0 is the list of operationsafter calling LTranspose(L).As an example, the handling of case 3 by the GOTO algo-rithm is shown in Fig. 6. In this example, we can transposeEO2 and EO3 in EC(O) by calling Transpose(EO2 ; EO3),so that an equivalent execution context EC(O)0 =[EO1; EO03; EO02] can be obtained. Then, since DC(O) �[EO1; EO03], we can apply an inclusion transformation on Oagainst EO02 to get EO, such that DC(EO) � EC(O)0. Totransform O into EO in this example, three IT/ET transfor-mations (one Transpose function costs one IT and one ETtransformations) are needed under the GOTO control algo-rithm, whereas four IT/ET transformations are needed under
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Fig. 6. The handling of mixed independent and dependent operationsby the GOTO control algorithmthe GOT control algorithm.Algorithm 2: GOTO(O, L): EOO: a causally-ready operationL: the list of operations [EO1; EO2; :::;EOm] in EC(O).EO: the execution form of O.1. Scan L[1;m] from left to right to �nd the �rst operationEOk such that EOk k O. If no such an operation isfound, then return EO := O.2. Otherwise, scan L[k + 1; m] to �nd operations causallypreceding O. If no single such operation is found, thenreturn EO := LIT (O; L[k;m]).3. Otherwise, let L1 = [EOc1 ; :::;EOcr ] be the list of op-erations in L[k;m] which are causally preceding O.(a) For 1 � i � r:LTranspose(L[k + i� 1; ci]);(b) return EO := LIT (O; L[k+ r;m]). 2It can be shown that the pre-conditions required bythe transformation functions are always guaranteed by theGOTO control algorithm. Therefore, if the post-conditions,including TP1 and TP2, are always ensured by the trans-formation functions, then the GOTO control algorithm willtransform O into EO, so that the execution of EO on EC(O)will preserve the intention of O and ensure convergence.CONCLUSIONS AND FUTURE DIRECTIONSMany people have experiences of using various editors. Notso many people have recognized that there would exist manyinteresting research issues in an editor when used in a real-time collaborative context. Even less people have come tolearn that some research issues in real-time group editors,such as consistency maintenance, would be so challengingthat a decade exploration would not be enough to exhausttheir research potential. In this paper, we have reviewed anumber of major operational transformation algorithms forconsistency maintenance in real-time group editors, includingthe dOPT algorithm, the GOT algorithm, the Jupiter algo-rithm, and the adOPTed algorithm, and have proposed a newoptimized transformation control algorithm { the GOTO al-gorithm. In this concluding section, we summarize the majorachievements in the past decade on the transformation-based
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9consistency maintenance techniques and point out the majoropen issues for further exploration.Major achievementsThree inconsistency problems { divergence, causality-violation, and intention-violation { have been identi�ed andexplored. Particularly, the non-serializable intention viola-tion problem has been distinguished from the serializabledivergence problem. Corresponding to these three prob-lems, consistency correctness criteria consist of three prop-erties: convergence, causality-preservation, and intention-preservation. It is useful to integrate these three propertiesin a consistency model, which e�ectively speci�es what con-sistency has been promised to the system users and whatproperties must be supported by the underlying system algo-rithms.The discovery of the necessary transformation pre-conditions has been a signi�cant step toward the designof correct transformation control algorithms. The notionof operation context is very useful in capturing the re-quired relationship between operations for correct transfor-mation. Alternative approaches to ensuring transformationpre-conditions include the GOT/GOTO control algorithmsworking on an 1-dimensional history bu�er, the Jupiter algo-rithm working on a 2-dimensional state space graph, and theadOPTed algorithm working on a N-dimensional interactionmodel graph.Two types of transformation functions have been proposed:inclusion and exclusion transformations. For algorithms thatuse a multi-dimensional data structure to keep track of oper-ations in their original, intermediate, and executed forms,such as the Jupiter and adOPTed algorithms, only inclu-sion transformation is needed. For algorithms that use an1-dimensional history bu�er to save operations in their ex-ecuted form only, such as the GOT and GOTO algorithms,apart from inclusion transformation, exclusion transforma-tion is needed to recover operations' original and intermedi-ate forms from their executed forms.The identi�cation of proper trans-formation post-conditions has played a crucial role in thedesign of both the generic transformation control algorithmsand application dependent transformation functions. By re-quiring context-based post-conditions, the GOT control algo-rithm can achieve intention-preservation. The context-basedpost-conditions, however, do not capture the conditions forensuring convergence, so the GOT control algorithm must beintegrated with an undo/do/redo scheme to achieve conver-gence. In essence, undo/redo can also be viewed as a kindof transformation, which is performed directly on the doc-ument states rather than on the operations. By requiringTP1 only, the Jupiter algorithm can achieve convergence insystems which are restricted to 2-way communication. By re-quiring both TP1 and TP2, the adOPTed algorithm achievesconvergence in systems which allow N-way communication.Neither TP1 nor TP2, however, captures the conditions forensuring intention-preservation, so intention-preservation hasbeen implicitly handled by transformation functions in thedOPT algorithm, the Jupiter algorithm, and the adOPTedalgorithm. By requiring both TP1 and TP2, in additionto the context-based post-conditions, the GOT control al-gorithm alone is able to achieve both intention-preservationand convergence. By performing transformations on both

de�nition and execution contexts, the GOTO algorithm isable to optimize the GOT algorithm by reducing the numberof transformations.Open issues and future directionsThe correctness of the whole operational transformationscheme relies on the satisfaction of both transformation pre-conditions and post-conditions. Lots of work have been doneon the design of correct generic transformation control al-gorithms to ensure transformation pre-conditions. However,not much work has been done on the design of application-dependent transformation functions which could really ensuretransformation post-conditions [16]. We have learned thatTP1 and TP2 have to be satis�ed by transformation functionsin order to ensure convergence, but we know little about howto verify whether an existing transformation function reallysatis�es TP1 and TP2. In fact, as illustrated in [17], someseemingly correct transformation functions do not really sat-isfy TP1 and TP2. More serious attention should be given tothe design of transformation functions to better understandthe intrinsic interactions (in the form of pre-/post-conditions)between transformation functions and transformation controlalgorithms.Research should also be directed toward formal speci�ca-tion and veri�cation of operational transformation concepts,properties, and algorithms. This formalization and veri�ca-tion is necessary for rigorously proving the correctness of thealgorithms and for analyzing and improving the time andspace complexities of existing algorithms. In [1], a Calcu-lus for Concurrent Update (CCU) has been derived from thedOPT algorithm as a tool for the purpose of formal mod-eling and veri�cation of consistency-preserving operationaltransformation. The Team Automata [6] is another mathe-matical model for describing the interaction of a groupwaresystem components. More work needs to be done in devel-oping and applying innovative theoretical tools to verify op-erational transformation algorithms and systems.Future research should distinguish and explore two types ofconsistencies: one is syntactic consistency, which is concernedwith whether all sites have the same view of the shared ob-jects, regardless of whether the common view makes sensein the application context; and the other is semantic consis-tency, which is concerned with whether all sites have the sameview of the shared objects, as well as whether the commonview makes sense in the application context. There may existmany levels of syntactic consistency and semantic consistencyin a particular application context. Previous work has mainlyexplored issues related to syntactic consistency. Particularly,the term intention as de�ned in [14, 17] and used in this paperhas captured only a small piece of the much richer meaning ofintention from the human user's perspective. This brings upinteresting areas of research concerned with characterizationand preservation of the human user's intentions in collabora-tive contexts, or group intentions. It may be infeasible for thesystem alone to automatically determine the human group in-tentions for di�erent groups with divergent group goals. Thesystem, however, could and should have mechanisms to helpthe group users decide their group intentions and resolve theircon
icts. In general, we advocate a groupware system designparadigm, which builds a su�cient amount of generic sup-porting mechanism into the system, but leave the high levelcollaboration policy decisions up to the system users. A good
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10groupware system should be easily tunable by its users forsupporting various collaboration needs [2, 10].A lot of e�orts have been putted on achieving the short-est response time (as short as single user editors), but notmuch research has been done on noti�cation policy { whenand how to make local updates public to achieve global con-sistency. Alternatives to notifying remote sites immediatelyafter executing an operation at the local site include periodicnoti�cation, noti�cation on demand, greying out the screento tell user that the displayed information is out-of-date, etc.Future research should be conducted on mechanisms for sup-porting alternative noti�cation policies and their applicabil-ity in di�erent application environments.Operation granularity is another unexplored issue. Cur-rent transformation algorithms are only capable of handling�ne-grain primitive operations, such as Insert and Delete.Useful editors, however, must o�er to the end user higherlevel compound operations, such as Move, and Replace. Onone hand, the system needs additional mechanisms to supportcoarse-grain compound operations as an atomic sequence ofprimitive operations while still ensuring consistency proper-ties. The richer semantics of the compound operations, onthe other hand, could help the system to better understandand preserve the user's intentions.A number of prototype group editors have been built inthe past by various research groups for testing the feasibilityof transformation-based consistency maintenance algorithms,and for investigating system design and implementation is-sues. GROVE has been used in several real groups for avariety of design activities to evaluate the system from usersperspective and to gain usage experience [4, 5]. Since then,however, little has been reported on using this type of sys-tem in real-life collaborative environments to study the user'sworking modes in using the system, and to conduct statisticsanalysis of con
icts. Much more research e�orts should bedirected toward better understanding the potential e�ects ofthis type of system on people, their work and interactions.Although all the transformation-based consistency main-tenance algorithms and functions were designed in the con-text of text editing, many of them are actually quite generaland potentially applicable in other domains of group edit-ing. It would be interesting and useful to apply operationaltransformation in graphics/image/multimedia editors to fur-ther validate the generic algorithms and to gain more in-sights in the design and application of these types of systems.Even techniques used in transforming a sequence of charac-ters could potentially be applicable in other real-time group-ware systems, which allow concurrent insertion/deletion ofany sequence of objects with a linearly ordered relationship.Moreover, operational transformation has been found veryuseful in supporting user-initiated collaborative undo opera-tions [12, 13].Consistency maintenance is a fundamental issue in manyareas of computing systems, including operating systems,databases systems, distributed shared memory systems,and groupware systems. Research on real-time group ed-itors, as a special class of distributed systems support-ing human-computer-human interactions, has drawn inspira-tions from traditional distributed computing techniques (e.g.,causal/total ordering of events, state-vector timestamping,serialization, etc.), and has also invented the non-traditionaloperational transformation technique to address its special is-
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